Example 2. By Gaucs's elimination method, solve

$$
\begin{aligned}
5 x-y-2 z & =142 \\
x-3 y-z & =-30 \\
2 x-y-3 z & =-50 .
\end{aligned}
$$

Solution. The largest coefficient in the first equation is 5 , which is pivot lement. So divide first equation by 5 , we get

$$
\begin{equation*}
x-\frac{1}{5} y-\frac{2}{5} z=\frac{142}{5} \tag{1}
\end{equation*}
$$

Now eliminating x from second and third equations which heip of (1), we get

$$
\begin{align*}
& -\frac{14}{5} y-\frac{3}{5} z=-\frac{292}{5} \tag{2}\\
& -\frac{3}{5} y-\frac{11}{5} z=-\frac{309}{5} \tag{3}
\end{align*}
$$

Eliminating y from (2) and (3), we get

$$
\begin{aligned}
-\frac{145}{5} z & =-\frac{3450}{5} \\
z & =\frac{3450}{145}=23.79 .
\end{aligned}
$$

Subtitute the value of z into (3), we get

$$
\begin{aligned}
-\frac{3}{5} y & -\frac{11}{5}(23 \cdot 70)=-\frac{309}{5} \\
-\frac{3}{5} y & =-\frac{309}{5}+\frac{11(23 \cdot 79)}{5} \\
-3 y & =-309+11(23 \cdot 79)=-309+261 \cdot 69 \\
-3 y & =-47.31 \\
y & =15.77 .
\end{aligned}
$$

or
Substitute the values of y and z into (1), we get

$$
\begin{aligned}
& x=\frac{1}{5}(15.77)-\frac{2}{5}(23.79)=\frac{142}{5} \\
& x=\frac{142}{5}+\frac{15.77}{5}+\frac{2(23.79)}{5}=\frac{205.35}{5} \\
& x=41.07 .
\end{aligned}
$$

Hence, the solution are given by

$$
x=41 \cdot 07, y=15 \cdot 77, z=23.79 .
$$

Example 3. Using Gauss's elimination method solve

$$
\begin{array}{r}
2 x_{1}+4 x_{2}+x_{3}=3 \\
3 x_{1}+2 x_{2}-2 x_{3}=2 \\
x_{1}-x_{2}+x_{3}=6 .
\end{array}
$$

Solution. Dividing first equation by 2 , we get

$$
\begin{equation*}
x_{1}+2 x_{2}+\frac{1}{2} x_{3}=\frac{3}{2} \tag{1}
\end{equation*}
$$

Multiplying (1) by 3 and subtract from second and also subtract (1) from third equation, we get

$$
\begin{array}{r}
4 x_{2}+\frac{7}{2} x_{3}=\frac{5}{2} \\
-3 x_{2}+\frac{1}{2} x_{3}=\frac{9}{2} . \tag{3}
\end{array}
$$

Now dividing (2) by 4 and subtract after multiplied by -3 from (3), we get

$$
25 x_{3}=51
$$

$$
x_{3}=\frac{51}{25}=2.04
$$

Substitute the value of x_{3} in (2), we get

$$
\begin{aligned}
& 4 x_{2}+\frac{7}{2}(2 \cdot 04)=\frac{5}{2} \\
& 4 x_{2}=\frac{5}{2}-\frac{7(2 \cdot 04)}{2}=\frac{5-14 \cdot 28}{2} \\
& x_{2}=-\frac{9 \cdot 28}{8} \\
& x_{2}=1 \cdot 16 .
\end{aligned}
$$

Now substitute the values of x_{2} and x_{3} in (1), we get

$$
\begin{aligned}
x_{1} & +2(-1 \cdot 16)+\frac{1}{2}(2.04)=\frac{3}{2} \\
x_{1} & =\frac{3}{2}+2(1 \cdot 16)-\frac{1}{2}(2.04) \\
& =\frac{3+4.64-2.04}{2}=\frac{5.6}{2} \\
x_{1} & =2.8 .
\end{aligned}
$$

Hence, the solutions are given by

$$
x_{1}=2 \cdot 8, x_{2}=-1 \cdot 16, x_{3}=2 \cdot 04 .
$$

Example 4. Solve by Gauss-elimination mehtod

$$
\begin{array}{r}
2 x+y+4 z=12 \\
8 x-3 y+2 z=23 \\
4 x+11 y-z=33 .
\end{array}
$$

Solution. Dividing first equation by 2 , we get

$$
\begin{equation*}
x+\frac{1}{2} y+2 z=6 \tag{1}
\end{equation*}
$$

Now subtract (1) after multiplied by 8 and 4 respectively from second and third equations, we get

$$
\begin{align*}
-7 y-14 x & =-45 \tag{3}\\
9 y-9 z & =9 . \tag{2}
\end{align*}
$$

Now divide (2) by -7, we get

$$
\begin{equation*}
y+2 z=\frac{45}{7} . \tag{4}
\end{equation*}
$$

Now multiplying (4) by 9 and subtract from (3), we get

$$
\begin{align*}
& -27 z=9-\frac{405}{7} \\
& -27 z=-\frac{342}{7} \tag{5}
\end{align*}
$$

Hence, the system of equations reduces to upper triangular form as follows :

$$
\left.\begin{array}{rl}
x+\frac{1}{2} y+2 z & =6 \tag{6}\\
y+2 z & =\frac{45}{7} \\
-27 z & =-\frac{342}{7}
\end{array}\right\} .
$$

By back substitution, we get

$$
z=\frac{342}{189}=1.81
$$

and

$$
\begin{aligned}
& y+2(1.81)=\frac{45}{7} \\
& y=\frac{45}{7}-2(1.81) \\
& =6.43-3.62=2.81 \\
& x+\frac{1}{2}(2.81)+2(1.81)=6 \text {. }
\end{aligned}
$$

$$
\therefore \quad x=6-\frac{1}{2}(2.81)-2(1.81)=09^{\prime} 75
$$

Hence, the solution is

$$
x=0.975, y=281, z=1.81
$$

Example 5. Apply Gauss elimination method to solve the equations

$$
\begin{aligned}
x+4 y-z & =-5 \\
x+y-6 z & =-12 \\
-3 x-y-z & =4
\end{aligned}
$$

Solution. Eliminating x from second and third equation with the help of firgt equation. Subtract first equation from second and after multiplied by 3 from third respectively, we get the system of equations as follows :

$$
\begin{align*}
x+4 y-z & =-5 \tag{1}\\
-3 y-5 z & =-7 \tag{2}\\
-13 y+2 z & =19 \tag{3}
\end{align*}
$$

Eliminating y from (3) with help of (2). Divide (2) by -3 and then this equation is subtracted after multiplied by -13 from (3), we get

$$
\left.\begin{array}{rl}
x+4 y-z & =-5 \\
y+\frac{5}{3} z & =\frac{7}{3} \tag{4}\\
\frac{71}{3} z & =\frac{148}{3}
\end{array}\right\} .
$$

and

$$
\begin{aligned}
& z=\frac{148}{71} \\
& y=\frac{7}{3}-\frac{5}{3} z \\
& y=\frac{7}{3}-\frac{5}{3}\left(\frac{148}{71}\right) \\
& y=-\frac{81}{71}
\end{aligned}
$$

and

$$
\begin{aligned}
z & =-5-4 y+z \\
& =-5-4\left(-\frac{81}{71}\right)+\frac{148}{71} \\
& =-5+\frac{472}{71}=\frac{117}{71}
\end{aligned}
$$

Hence, the solution is

$$
x=\frac{117}{71}, y=-\frac{81}{71}, z=\frac{148}{71} .
$$

Example 6. Solve the following system by Gauss's elimination method

$$
\begin{array}{r}
2 x+y+z=10 \\
3 x+2 y+3 z=18 \\
x+4 y+9 z=16
\end{array}
$$

[MDU 2003]
Solution. We have

$$
\begin{array}{r}
2 x+y+z=10 \\
3 x+2 y+3 z=18 \\
x+4 y+9 z=16 \tag{3}
\end{array}
$$

Divide (1) by 2 and subtract after and multiplied by 3 from (2) and subtract firm ${ }^{10}(3)$, we get

$$
\begin{align*}
x+\frac{1}{2} y+\frac{1}{2} z & =5 \tag{4}\\
\frac{1}{2} y+\frac{3}{2} z & =3 \tag{5}\\
\frac{7}{2} y+\frac{17}{2} z & =11 \tag{6}
\end{align*}
$$

Now divide (5) by $\frac{1}{2}$ and then subtract it after multiplied by $\frac{7}{2}$ from (6), we get

$$
\begin{align*}
x+\frac{1}{2} y+\frac{1}{2} z & =5 \tag{7}\\
y+3 z & =6 \tag{9}\\
-2 z & =-10 . \tag{8}
\end{align*}
$$

From back substitution from (9), (8) and (7), we get

$$
z=5
$$

$$
y+3 z=6
$$

$$
y+3(5)=6
$$

$$
y=6-15
$$

$$
y=-9
$$

and

$$
x+\frac{1}{2}(-9)+\frac{1}{2}(5)=5
$$

Hence, the solution is

$$
\begin{aligned}
& x=5+\frac{9}{2}-\frac{5}{2}=7 . \\
& x=7, y=-9, z=5 .
\end{aligned}
$$

Example 7. By Gauss's elimination method, solve

$$
\begin{aligned}
4 x+11 y-z & =33 \\
x+y+4 z & =12 \\
8 x-3 y+2 z & =20 .
\end{aligned}
$$

Solution. Given equation are

$$
\begin{align*}
x+y+4 z & =12 \\
4 x+11 y-z & =33 \tag{1}\\
8 x-3 y+2 z & =20 . \tag{2}
\end{align*}
$$

Eliminating x from (2) and (3), so subtract (1) after multiplied by 4 and 8 from 2) and (3), respectively, we get

$$
\begin{align*}
x+y+4 z & =12 \tag{4}\\
7 y-17 z & =-15 \tag{5}\\
-11 y-30 z & =-76 . \tag{6}
\end{align*}
$$

Now divide (5) by 7 and then subtract if after multiplied by -11 from (6), the quation (1) to (3) reduce to

$$
\begin{align*}
x+y+4 z & =12 \tag{7}\\
y-\frac{17}{7} z & =-\frac{15}{7} \tag{8}\\
-\frac{397}{7} z & =-\frac{697}{7} . \tag{9}
\end{align*}
$$

By back substitution from (9), (8) and (7), we get

$$
z=\frac{697}{397} .
$$

From (8)

$$
\begin{aligned}
& y=-\frac{15}{7}+\frac{17}{7} z \\
& y=-\frac{15}{7}+\frac{17}{7}\left(\frac{697}{397}\right)=\frac{1}{7}\left(\frac{5894}{397}\right) \\
& y=\frac{5894}{2779} .
\end{aligned}
$$

From (7)

$$
\begin{aligned}
& x+y+4 z=12 \\
& x+\frac{5894}{2779}+4\left(\frac{697}{397}\right)=12 \\
& x=12-\frac{5894}{2779}-4\left(\frac{697}{397}\right)=\frac{7938}{2779} .
\end{aligned}
$$

Hence, the solution is

$$
\begin{aligned}
& x=\frac{7938}{2779}=2 \cdot 856 \\
& y=\frac{5894}{2779}=2 \cdot 121 \\
& z=\frac{697}{397}=1.756 .
\end{aligned}
$$

Example 8. Solve by Gauss elimination method

$$
\begin{aligned}
x+2 y+z & =3 \\
2 x+3 y+3 z & =10 \\
3 x-y+2 z & =13 .
\end{aligned}
$$

Solution. Given equation are

$$
\begin{align*}
x+2 y+z & =3 \tag{1}\\
2 x+3 y+3 z & =10 \tag{2}\\
3 x-y+2 z & =13 . \tag{3}
\end{align*}
$$

Here pivot element of (1) is 1 so no need for dividing (1). Now eliminating x from (2) and (3) by subtracting (1) after multiplied by 2 and 3 respectively from (2) and (3), we get

$$
\begin{align*}
x+2 y+z & =3 \tag{4}\\
-y+z & =4 \tag{5}\\
-7 y-z & =4 . \tag{6}
\end{align*}
$$

Now eliminating y from (6) with the help of (5) by subtracting (5) after multiplied by -7 from (6), the equations (1) to (3), reduce to

$$
\begin{align*}
x+2 y+z & =3 \tag{7}\\
-y+z & =4 \tag{8}\\
6 z & =32 .
\end{align*}
$$

By back substitution from (9), (8) and (7), we get
From (9)

$$
z=\frac{32}{6}
$$

From (8)

$$
\begin{aligned}
-y & =4-z \\
& =4-\frac{32}{6}=-\frac{8}{6} .
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{8}{6} \\
& x+2 y+z=3 \\
& x+2\left(\frac{8}{6}\right)+\frac{32}{6}=3 \\
& x=3-\frac{32}{6}-\frac{16}{6} \\
& \quad=\frac{18-48}{6}=-\frac{30}{6} \\
& x=-5 .
\end{aligned}
$$

Hence, the solution is

$$
\begin{aligned}
& x=-5, y=\frac{8}{6}, z=\frac{32}{6} \\
& x=-5, y=\frac{4}{3}, z=\frac{16}{3}
\end{aligned}
$$

